

A versatile, selective and "green" LC-DAD multi-active method with an extra: Method development, validation and routine application

Christoph Czerwenka

Austrian Agency for Health and Food Safety, Vienna, Austria

- Traditional analysis of active substances
- Goals in the development of a LC multi-active method
- Choices made during method development
- Easy inclusion of new compounds
- Method validation and proficiency test results
- Application examples
- Use of the same chromatographic setup for the analysis of relevant impurities
- Conclusions and outlook

Traditional analysis of active substances I

Often similar but still individual methods for one compound

AGES

- Active substances are generally analysed by either HPLC or GC
- The traditional approach is to have a "dedicated" method for one active substance
- It is mostly unknown whether choices made during method development (selection of column type, mobile phase, etc.) were deliberate or more by chance/coincidence
- This results in (almost) all methods being different with a huge number of different columns, mobile phases, etc.
- Despite variations between methods many of them are quite similar (e.g. HPLC methods mainly rely on reversed phase columns, mostly C18)
- Generally no information how these methods perform for formulations with second/ third active substance

An obstacle to efficient and cost-effective laboratory work

- Many laboratories need to analyse several or even a large number of different active substances in a variety of plant protection products
- (Strictly) following the prescriptions of the dedicated methods from CIPAC or manufacturers results in the need to have a large array of columns and mobile phases at hand in the laboratory
- ◆ The need for changing columns / mobile phases prohibits analysing different active substances in one sequence ⇒ highly inefficient
- ♦ Most traditional LC methods employ 4.6 mm ID columns with corresponding high flow rates (~ 1 ml/min) ⇒ consumption of large amounts of solvent and generation of corresponding amounts of waste

An alternative approach

Multi-active methods

- In other analytical areas the use of single-analyte or even group methods has long been abandoned, enabled by the use of highly selective detection systems (MS)
- Due to various factors (cost, availability, precision) the use of "true" (MS-based) multi-methods for the determination of active substances is not feasible
- Instead "multi-active methods" are an alternative to the traditional compound-dedicated methods
- Parallel establishment and implementation by several laboratories
- ESPAC method with LC and GC parts published as "free method" on CIPAC homepage

Goals in the development of a LC multi-active method Our Wishlist I

- Focus on LC as no requirement for sufficient volatility and most active substances are (sufficiently) UV-active
- Highly versatile to cover a large number of different active substances from different chemical classes
- Cover a wide concentration range (sub g/kg to high g/kg)
- High selectivity to allow the analysis of plant protection products with more than one active substance and separate target compound from impurities and coformulants
- Chromatographic setup should allow easy transfer between instruments (and laboratories) and pose no special requirements

Goals in the development of a LC multi-active method $\ensuremath{\mathsf{AGES}}\xspace$

- * "Green" method with reduced solvent consumption
- Good performance in terms of linearity, recovery and precision (comply with requirements of SANCO 3030/99 rev. 5)
- Fit for accreditation under ISO 17025

Choices made during method development Instrumentation

- Standard HPLC with upper pressure limit of 400 bar
- Allows use of column with 3.5 µm particles to gain better efficiency than with 5 µm particles
- Column size of 150 x 2.1 mm selected:
 - no issues with extra-column volumes
 - Iower flow-rate saves approx. 75% solvent compared to 4.6 mm ID column
- Single C18-column from big manufacturer to minimise potential supply problems
- Method established on both Agilent 1100 series and Agilent 1260 Infinity II instruments using a Waters XTerra[™] column

Choices made during method development Chromatography

- Isocratic elution for maximum resolution between closely related compounds, no need to worry about gradient delay time when transferring to different instrument
- Ratio of aqueous / organic mobile phase selected so that active substance elutes within 6 minutes
- Wash step to remove late-eluting constituents followed by re-equilibration
- Aqueous mobile phase: Water + 0.1% H₃PO₄ (alternative: water)
- Organic mobile phase: acetonitrile (alternative: methanol)
- Possible on both binary pump with solvent selection valve and quaternary pump

Choices made during method development Detection

- Optimised wavelength for each active substance:
 - * as high as possible for best selectivity
 - (local) maximum in spectrum
 - sufficient but not too high sensitivity
- Use of diode array detector to allow acquisition of spectra for enhanced identification confidence and peak purity assessment against library

Choices made during method development

Sample preparation / concentration ranges

- One-step sample preparation:
 - Weigh sample amount corresponding to 25 mg active substance in 50 ml flask
 - * Add extraction solvent (mostly: acetonitrile) and extract in ultrasonic bath for 15 min
 - \diamond Fill up and filter turbid solutions through 0.2 μm filter
- This approach covers active substance contents of 20 1.000 g/l (g/kg), calibration range 0.375 0.625 mg/ml (75-125% of nominal amount); "standard concentration"
- For active substance contents of 0.5 20 g/l (g/kg) sample amount corresponding to 5 mg active substance, calibration range 0.05 – 0.15 mg/ml; "low concentration"
- Active substance contents < 0.5 g/l: analyse directly, adjust calibration range to cover 50-150% of nominal amount; "very low concentration"</p>

Easy inclusion of new compounds

Scouting run and optimisation runs

- For the inclusion of a new active substance into the method the optimum percentage of organic mobile phase and detection wavelength need to be determined
- Scouting run: analyse 0.5 mg/ml standard with 20 min gradient from 5% to 100% organic mobile phase, acquire UV spectra from 210 to 400 nm
- Calculate initial isocratic conditions and determine initial wavelength
- Check initial settings:
 - * Sufficient retention (k > 2) and retention time < 6 min
 - Peak height min. 200 mAU, max. 1000 mAU
- Adjust isocratic conditions and/or wavelength if required and re-check

Method scope

Covered active substances

To date our multi-active method covers more than 80 compounds

- Fully validated for 81 active substances @ standard concentration, 7 active substances @ low concentration and 2 active substances @ very low concentration
- ♦ Linearity: $r \ge 0,999$ for all analytes
- Recovery:

Method validation

Linearity, recovery

- within 97-103% in all cases for active substance contents @ standard concentration and low concentration
- Between 98.7 % and 111.4% for two active substances @ 0.05 g/l (70-130%)

Precision

- The intra-laboratory precision was determined as measure for precision
- It was calculated from 2x3 replicates with two analysts performing the analysis three times each on two different days \$\Rightarrow\$ unmodified Horwitz equation applies
- For a TC the Horwitz RSD = 2%, for a 0.5 g/kg active substance it is 6.3%
- In all cases, including very low
 concentrations, the precision was ≤2% !

Proficiency test results

Successful participations over many years

- In the last 5 years (2020-2024) we participated in 12 proficiency tests with 26 active substances in total (23 different ones)
- The obtained z-scores were all within ±2

Accreditation & routine application

AGES

A method fit for official controls

- Our multi-active method has been accredited for more than 5 years under the scope of our laboratory's ISO 17025 accreditation
- The method has been used routinely in the course of official market control for many hundreds of samples covering a huge variation of formulation types
- Very few difficulties were encountered, e.g. co-elution of two active substances in a plant protection product containing four active substances could only be solved by changing to methanol and substantially extending the isocratic run-time (but still without any need to change the chromatographic setup!)
- If challenges occur they are in almost all cases related to extraction problems

Aclonifen-containing product

Chromatogram and UV spectrum match with library

Plant protection product with three active substances I

 Chromatogram of suspension concentrate containing chlorotoluron (250 g/l), diflufenican (40 g/l) and pendimethalin (300 g/l)

Plant protection product with three active substances II

 Chromatogram of emulsion concentrate containing bixafen (65 g/l), fluopyram (65 g/l) and prothioconazole (130 g/l)

Solving co-elution problems by switching organic mobile phase

Emulsion concentrate containing azoxystrobin and tebuconazole

Analysis of relevant impurities

Use of same chromatographic setup

The relevant impurity (Z)-Azoxystrobin can be analysed with the same setup

(same column, mobile phases: water + 0.1% H_3PO_4 / acetonitrile, isocratic elution)

- Calibration range: 5 200 mg/l ⁴⁰
 (corresponds to 5-200% of maximum level (25 g/kg azoxystrobin))
- ★ Excellent performance:
 recovery: 94.7 96.2 % (90-110 % for TC)
 precision: RSD ≤ 1.6% (3.5% for TC)⁰
- Active substance and impurity can

Analysis of formaldehyde

A challenging analyte of various potential origins

- Formaldehyde is a relevant impurity (of glyphosate) and at the same time a forbidden co-formulant according to EU Regulation 2021/383
- ◆ Formaldehyde may also be present as unreacted monomer of different polymers, e.g. urea-formaldehyde polymer (Pergopak™), as well as from formaldehydereleasing preservatives, e.g. bronopol, benzyloxymethanol
- Various methods of analysis, but all require derivatisation
- A classical derivatisation reaction uses 2,4-dinitrophenylhydrazine
- When sample contains compounds that may release (additional) formaldehyde, longer and varying standing times after derivatisation can lead to increased (wrong) results for formaldehyde

Analysis of formaldehyde

Inline derivatisation & use of multi-active chromatographic setup

- AGES
- An elegant solution is to perform the derivatisation in the HPLC injector ("inline")
- Sample and derivatisation reagent are drawn into autosampler loop, mixed and left to react before the derivative is then injected
 fully automated and economical
- HPLC-UV analysis using column and mobile phase components of multi-active method, employing a 16 min gradient
- Despite miniaturisation
 (2 µl derivatisation reagent) excellent linearity was obtained

Analysis of formaldehyde

Inline derivatisation & use of multi-active chromatographic setup

The method was successfully validated:

- LOQ = 0.05 g/kg (0.005% w/w)
- Recovery: 99.5 102.5 %
- ♦ Precision: $\leq 2.1\%$
- Five-fold analysis of a plant protection product containing the preservative benzyloxymethanol (Preventol D 2): formaldehyde: 0.029% (w/w) relative standard deviation: 1.16%
- See also poster by Christian Mink

All goals achieved

- The developed multi-active method fulfils all requirements including:
 - Analytical performance (selectivity, versatility, concentration range, precision)
 - Ease of use (single well-defined setup, 24/7 runs possible, transferability)
 - Reduced environmental impact (lowered solvent consumption)
- Performance proven in routine application and proficiency tests over many years
- Two relevant impurities can also be analysed with the same instrumental setup, including a derivatisation method, further improving laboratory efficiency
- Limitations of approach only encountered rarely so far (e.g. separate method for glyphosate, active substances for which enantioselective analysis is required)

Conclusions II

The future of active substance analysis

- A multi-active method is far superior to individual compound-dedicated methods in terms of efficiency, while delivering the same analytical performance
- Further efficiency gains, e.g. by using UHPLC, would in principle be possible
- Laboratories not yet using a multi-active method should consider implementation
- The future of active substance analysis lies with one/two multi-active methods, with the necessity of dedicated single-compound methods limited to special cases

THANK YOU!

My colleagues involved in establishing and running this method

especially Barbara Steffl

Österreichische Agentur für Gesundheit und Ernährungssicherheit GmbH

Christoph CZERWENKA

Head Group of Contaminant and Special Analysis

Spargelfeldstrasse 191

A-1220 Wien

christoph.czerwenka@ages.at

www.ages.at